Designing a News Article Monitoring, Filtering, and Tracking System with NewsAPI.ai
READER BEWARE: THE FOLLOWING WAS WRITTEN ENTIRELY BY AI WITHOUT HUMAN EDITING.
Introduction
In today’s information-saturated environment, professionals and organizations face a critical challenge: how to efficiently monitor, filter, and track relevant news articles from the vast ocean of content published daily. Whether you’re a researcher tracking industry trends, a product manager monitoring competitor announcements, or an executive staying informed about regulatory changes, the ability to funnel news down to what matters most—and recall it when needed—is invaluable.
This article presents a comprehensive design for a news article monitoring, filtering, and tracking system that addresses this challenge. The system leverages NewsAPI.ai for automated monitoring, provides an optimized user interface for efficient filtering and selection, implements robust tracking for later recall, and exposes data through a flexible JSON API suitable for web, mobile, and other interfaces.
System Overview
The news monitoring and tracking system consists of four primary components working together in an integrated workflow:
- Monitoring Component - Automated retrieval of news articles via NewsAPI.ai
- Filtering Component - User-optimized interface for scanning, selecting, and excluding articles
- Tracking Component - Storage system for selected articles and metadata
- Recall Component - API-driven retrieval interface for accessing tracked articles
Architecture Diagram
┌─────────────────────────────────────────────────────────────────┐
│ News Monitoring System │
│ │
│ ┌────────────────┐ ┌────────────────┐ │
│ │ NewsAPI.ai │ │ Article │ │
│ │ Integration │─────▶│ Database │ │
│ │ (Monitoring) │ │ (Storage) │ │
│ └────────────────┘ └───────┬────────┘ │
│ │ │ │
│ │ │ │
│ ▼ │ │
│ ┌────────────────┐ │ │
│ │ Filtering │ │ │
│ │ Interface │───────────────┘ │
│ │ (User UI) │ │
│ └────────────────┘ │
│ │ │
│ │ │
│ ▼ │
│ ┌────────────────┐ ┌────────────────┐ │
│ │ Tracking │ │ Recall API │ │
│ │ Service │─────▶│ (JSON) │ │
│ │ (Selection) │ │ Interface │ │
│ └────────────────┘ └────────────────┘ │
│ │ │
└───────────────────────────────────┼─────────────────────────────┘
│
┌───────────────┴───────────────┐
│ │
▼ ▼
┌──────────────┐ ┌──────────────┐
│ Web App │ │ Mobile App │
└──────────────┘ └──────────────┘
Data Flow
Inbound Flow (Article Discovery and Selection):
NewsAPI.ai → Article Database → Filtering Interface → User Selection → Tracking Service
Outbound Flow (Article Recall):
User Request → Recall API → Tracking Service → JSON Response → Client Application
Component 1: Monitoring with NewsAPI.ai
NewsAPI.ai Overview
NewsAPI.ai provides a comprehensive news aggregation service that monitors global news sources in real-time. Unlike simpler news APIs, NewsAPI.ai offers advanced features including:
- Multi-language support - Monitor news in 60+ languages
- Advanced filtering - Filter by keywords, concepts, categories, sources, and sentiment
- Event detection - Identify related articles covering the same event
- Trend analysis - Track trending topics and emerging stories
- High volume - Access to millions of articles from 100,000+ sources
Integration Architecture
The monitoring component operates as a scheduled service that periodically queries NewsAPI.ai and ingests new articles into the system.
Service Components:
- Query Manager - Manages search criteria and API queries
- Article Fetcher - Executes API calls to NewsAPI.ai
- Deduplication Engine - Prevents storing duplicate articles
- Metadata Extractor - Enriches articles with additional metadata
- Database Writer - Persists articles to storage
API Integration Example
import requests
from datetime import datetime, timedelta
class NewsAPIMonitor:
def __init__(self, api_key):
self.api_key = api_key
self.base_url = "https://newsapi.ai/api/v1/article/getArticles"
def fetch_articles(self, keywords, categories=None, sources=None,
language="eng", date_start=None, date_end=None):
"""
Fetch articles from NewsAPI.ai based on search criteria
Args:
keywords: List of keywords to search for
categories: List of categories (e.g., business, technology)
sources: List of specific news sources
language: Language code (default: English)
date_start: Start date for article search
date_end: End date for article search
Returns:
List of article objects
"""
query = {
"action": "getArticles",
"keyword": " OR ".join(keywords) if isinstance(keywords, list) else keywords,
"articlesPage": 1,
"articlesCount": 100,
"articlesSortBy": "date",
"articlesArticleBodyLen": -1, # Full article text
"resultType": "articles",
"dataType": ["news", "blog"],
"apiKey": self.api_key,
"forceMaxDataTimeWindow": 31
}
# Add optional filters
if categories:
query["categoryUri"] = categories
if sources:
query["sourceUri"] = sources
if language:
query["lang"] = language
if date_start:
query["dateStart"] = date_start.strftime("%Y-%m-%d")
if date_end:
query["dateEnd"] = date_end.strftime("%Y-%m-%d")
response = requests.post(self.base_url, json=query)
response.raise_for_status()
data = response.json()
return self._parse_articles(data)
def _parse_articles(self, api_response):
"""Parse NewsAPI.ai response into normalized article objects"""
articles = []
if "articles" not in api_response or "results" not in api_response["articles"]:
return articles
for article in api_response["articles"]["results"]:
articles.append({
"id": article.get("uri"),
"title": article.get("title"),
"url": article.get("url"),
"source": article.get("source", {}).get("title"),
"source_uri": article.get("source", {}).get("uri"),
"author": article.get("author"),
"published_date": article.get("dateTimePub"),
"body": article.get("body"),
"image_url": article.get("image"),
"language": article.get("lang"),
"sentiment": article.get("sentiment"),
"categories": [cat.get("label") for cat in article.get("categories", [])],
"concepts": [concept.get("label") for concept in article.get("concepts", [])],
"fetched_at": datetime.utcnow().isoformat()
})
return articles
def fetch_with_concepts(self, concepts, limit=100):
"""
Fetch articles related to specific concepts
Args:
concepts: List of concept URIs or labels
limit: Maximum number of articles to retrieve
Returns:
List of article objects
"""
query = {
"action": "getArticles",
"conceptUri": concepts,
"articlesPage": 1,
"articlesCount": limit,
"articlesSortBy": "rel", # Sort by relevance
"apiKey": self.api_key
}
response = requests.post(self.base_url, json=query)
response.raise_for_status()
return self._parse_articles(response.json())
Monitoring Schedule
The monitoring service should run on a configurable schedule based on the urgency of information needs:
Real-time Monitoring:
- Frequency: Every 5-15 minutes
- Use case: Breaking news, crisis monitoring, high-priority events
- Resource impact: High API usage, higher costs
Standard Monitoring:
- Frequency: Every 1-4 hours
- Use case: Industry news, competitor tracking, general updates
- Resource impact: Moderate API usage, balanced costs
Batch Monitoring:
- Frequency: Daily or weekly
- Use case: Research, trend analysis, low-priority topics
- Resource impact: Low API usage, minimal costs
Search Criteria Management
Users should be able to define and manage multiple search profiles:
{
"search_profiles": [
{
"id": "profile_001",
"name": "AI & Machine Learning",
"enabled": true,
"schedule": "hourly",
"criteria": {
"keywords": ["artificial intelligence", "machine learning", "deep learning"],
"concepts": ["AI", "ML"],
"categories": ["technology", "science"],
"languages": ["eng"],
"sources": ["techcrunch", "wired", "mit-technology-review"],
"exclude_keywords": ["crypto", "blockchain"]
}
},
{
"id": "profile_002",
"name": "Regulatory Updates",
"enabled": true,
"schedule": "daily",
"criteria": {
"keywords": ["regulation", "compliance", "GDPR", "data privacy"],
"categories": ["business", "politics"],
"languages": ["eng"],
"sentiment": "neutral"
}
}
]
}
Component 2: Filtering Interface for User Interaction
The filtering interface is the heart of user interaction with the system. It must enable users to efficiently scan hundreds of articles, make quick decisions about relevance, and refine their selections with minimal friction.
Design Principles
1. Speed and Efficiency
- Display key information at a glance
- Enable keyboard shortcuts for power users
- Support bulk operations
- Minimize clicks required for common actions
2. Progressive Disclosure
- Show summary view by default
- Expand to full details on demand
- Provide preview without leaving the main view
- Allow deep dive when needed
3. Smart Filtering
- Auto-categorization based on content
- Machine learning-based relevance scoring
- Quick filters for common criteria
- Advanced search for complex queries
4. Visual Hierarchy
- Highlight most relevant articles
- Use visual cues for status (new, read, saved, excluded)
- Group related articles
- Show trends and patterns
Interface Layout
┌─────────────────────────────────────────────────────────────────┐
│ News Article Filter [⚙ Settings] [👤] │
├─────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────────────────────────────────────────────────┐ │
│ │ Search Profiles: [AI & ML ▼] Last Updated: 2 min ago │ │
│ └──────────────────────────────────────────────────────────┘ │
│ │
│ ┌──────────────────────────────────────────────────────────┐ │
│ │ Filters: [All] [Today] [Unread] [Saved] [Excluded] │ │
│ │ Sort: [Relevance ▼] View: [⊞ Card] [≡ List] [📊 Grid] │ │
│ └──────────────────────────────────────────────────────────┘ │
│ │
│ ┌──────────────────────────────────────────────────────────┐ │
│ │ 📰 AI Breakthrough: New Model Achieves 95% Accuracy │ │
│ │ TechCrunch • 2 hours ago • AI, Machine Learning │ │
│ │ Researchers at MIT have developed a new... │ │
│ │ [💾 Save] [👁 Read Later] [❌ Exclude] [🔗 Open] │ │
│ └──────────────────────────────────────────────────────────┘ │
│ │
│ ┌──────────────────────────────────────────────────────────┐ │
│ │ 📰 Industry Report: AI Adoption Grows 40% YoY │ │
│ │ Wired • 5 hours ago • Business, Technology │ │
│ │ A new report shows enterprise AI adoption... │ │
│ │ [💾 Save] [👁 Read Later] [❌ Exclude] [🔗 Open] │ │
│ └──────────────────────────────────────────────────────────┘ │
│ │
│ Showing 1-20 of 247 articles [← 1 2 3 →] │
└─────────────────────────────────────────────────────────────────┘
User Actions
Primary Actions:
- Save - Mark article for tracking and later recall
- Read Later - Queue for deferred review
- Exclude - Remove from view and train filter
- Open - View full article in new tab
Secondary Actions:
- Share - Generate shareable link
- Tag - Add custom tags for organization
- Note - Add personal notes
- Similar - Find related articles
Keyboard Shortcuts
Power users benefit from keyboard-driven workflows:
Navigation:
j/k - Next/Previous article
Space - Scroll article preview
Enter - Open article detail view
Esc - Close detail view
Actions:
s - Save article
r - Read later
x - Exclude article
o - Open in new tab
Bulk Operations:
Shift+s - Save all visible
Shift+x - Exclude all visible
Ctrl+a - Select all
Filters:
f - Focus search
1-5 - Quick filter presets
/ - Advanced search
Smart Features
1. Relevance Scoring
Use machine learning to score articles based on:
- Historical user interactions
- Keyword match strength
- Source credibility
- Recency and timeliness
- Topic clustering with saved articles
class RelevanceScorer:
def __init__(self, user_profile):
self.user_profile = user_profile
def score_article(self, article):
"""
Calculate relevance score for an article
Returns:
Float score between 0-100
"""
score = 0.0
# Keyword matching (0-30 points)
score += self._score_keywords(article) * 30
# Source preference (0-20 points)
score += self._score_source(article) * 20
# Recency (0-15 points)
score += self._score_recency(article) * 15
# Category match (0-15 points)
score += self._score_categories(article) * 15
# Sentiment alignment (0-10 points)
score += self._score_sentiment(article) * 10
# Historical engagement (0-10 points)
score += self._score_engagement(article) * 10
return min(score, 100.0)
2. Auto-Categorization
Automatically group articles by:
- Topic clustering
- Source type (news, blog, research, etc.)
- Geographic region
- Time period
- Sentiment (positive, neutral, negative)
3. Duplicate Detection
Prevent showing multiple articles covering the same event:
- Content similarity analysis
- Title fuzzy matching
- Source cross-referencing
- Event clustering
4. Trend Highlighting
Identify and surface trending topics:
- Spike detection in article volume
- Emerging keywords
- Cross-source coverage
- Social media correlation
Mobile-Optimized View
The filtering interface must work seamlessly on mobile devices:
Mobile Adaptations:
- Swipe gestures (left: exclude, right: save)
- Bottom action bar for thumb-friendly access
- Infinite scroll for continuous browsing
- Offline mode with local caching
- Push notifications for high-priority articles
┌─────────────────┐
│ AI & ML News ▼│
├─────────────────┤
│ │
│ ◉ New (23) │
│ ○ Saved (45) │
│ ○ Read (102) │
│ │
├─────────────────┤
│ 📰 AI Breakthro │
│ ugh: New Model │
│ TechCrunch │
│ 2h ago • AI, ML │
│ │
│ ← Swipe actions │
│ [💾] [🔗] │
└─────────────────┘
Component 3: Tracking and Storage
The tracking component manages the persistence of selected articles and associated metadata. This component must efficiently store, index, and retrieve articles while maintaining data integrity and performance.
Database Schema
Articles Table:
CREATE TABLE articles (
id VARCHAR(255) PRIMARY KEY,
url TEXT NOT NULL UNIQUE,
title TEXT NOT NULL,
body TEXT,
summary TEXT,
author VARCHAR(255),
source_name VARCHAR(255),
source_uri VARCHAR(255),
published_date TIMESTAMP,
fetched_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
language VARCHAR(10),
sentiment DECIMAL(3,2),
image_url TEXT,
archived_location TEXT,
archived_at TIMESTAMP,
-- Full-text search
search_vector TSVECTOR,
-- Indexes
INDEX idx_published_date (published_date),
INDEX idx_source (source_name),
INDEX idx_language (language),
INDEX idx_fetched_date (fetched_date)
);
-- Full-text search index
CREATE INDEX idx_article_search ON articles USING GIN(search_vector);
User Article Tracking Table:
CREATE TABLE user_article_tracking (
id SERIAL PRIMARY KEY,
user_id INTEGER NOT NULL,
article_id VARCHAR(255) NOT NULL,
status VARCHAR(50) NOT NULL, -- 'saved', 'read_later', 'excluded', 'archived'
saved_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
read_at TIMESTAMP,
notes TEXT,
tags TEXT[], -- Array of tags
FOREIGN KEY (user_id) REFERENCES users(id) ON DELETE CASCADE,
FOREIGN KEY (article_id) REFERENCES articles(id) ON DELETE CASCADE,
UNIQUE(user_id, article_id),
INDEX idx_user_status (user_id, status),
INDEX idx_saved_at (saved_at),
INDEX idx_tags (tags) USING GIN
);
Article Categories:
CREATE TABLE article_categories (
article_id VARCHAR(255) NOT NULL,
category VARCHAR(100) NOT NULL,
FOREIGN KEY (article_id) REFERENCES articles(id) ON DELETE CASCADE,
PRIMARY KEY (article_id, category),
INDEX idx_category (category)
);
Article Concepts:
CREATE TABLE article_concepts (
article_id VARCHAR(255) NOT NULL,
concept VARCHAR(200) NOT NULL,
relevance DECIMAL(3,2),
FOREIGN KEY (article_id) REFERENCES articles(id) ON DELETE CASCADE,
PRIMARY KEY (article_id, concept),
INDEX idx_concept (concept)
);
Storage Service
from datetime import datetime
from typing import List, Optional
class ArticleTrackingService:
def __init__(self, db_connection):
self.db = db_connection
def save_article(self, user_id: int, article_id: str,
tags: Optional[List[str]] = None,
notes: Optional[str] = None):
"""
Save an article for a user
Args:
user_id: User identifier
article_id: Article identifier
tags: Optional list of tags
notes: Optional user notes
"""
query = """
INSERT INTO user_article_tracking
(user_id, article_id, status, tags, notes, saved_at)
VALUES (%s, %s, 'saved', %s, %s, %s)
ON CONFLICT (user_id, article_id)
DO UPDATE SET
status = 'saved',
tags = EXCLUDED.tags,
notes = EXCLUDED.notes,
saved_at = EXCLUDED.saved_at
"""
self.db.execute(query, (
user_id,
article_id,
tags or [],
notes,
datetime.utcnow()
))
def get_saved_articles(self, user_id: int,
tags: Optional[List[str]] = None,
date_from: Optional[datetime] = None,
date_to: Optional[datetime] = None,
limit: int = 100,
offset: int = 0):
"""
Retrieve saved articles for a user
Args:
user_id: User identifier
tags: Optional filter by tags
date_from: Optional start date filter
date_to: Optional end date filter
limit: Maximum number of results
offset: Pagination offset
Returns:
List of article objects with tracking metadata
"""
query = """
SELECT
a.*,
uat.saved_at,
uat.read_at,
uat.notes,
uat.tags,
array_agg(DISTINCT ac.category) as categories,
array_agg(DISTINCT aco.concept) as concepts
FROM articles a
INNER JOIN user_article_tracking uat
ON a.id = uat.article_id
LEFT JOIN article_categories ac
ON a.id = ac.article_id
LEFT JOIN article_concepts aco
ON a.id = aco.article_id
WHERE uat.user_id = %s
AND uat.status = 'saved'
"""
params = [user_id]
if tags:
query += " AND uat.tags && %s"
params.append(tags)
if date_from:
query += " AND uat.saved_at >= %s"
params.append(date_from)
if date_to:
query += " AND uat.saved_at <= %s"
params.append(date_to)
query += """
GROUP BY a.id, uat.saved_at, uat.read_at, uat.notes, uat.tags
ORDER BY uat.saved_at DESC
LIMIT %s OFFSET %s
"""
params.extend([limit, offset])
return self.db.query(query, params)
def search_saved_articles(self, user_id: int, search_query: str):
"""
Full-text search across saved articles
Args:
user_id: User identifier
search_query: Search query string
Returns:
List of matching articles ranked by relevance
"""
query = """
SELECT
a.*,
uat.saved_at,
uat.tags,
uat.notes,
ts_rank(a.search_vector, plainto_tsquery(%s)) as rank
FROM articles a
INNER JOIN user_article_tracking uat
ON a.id = uat.article_id
WHERE uat.user_id = %s
AND uat.status = 'saved'
AND a.search_vector @@ plainto_tsquery(%s)
ORDER BY rank DESC
LIMIT 50
"""
return self.db.query(query, (search_query, user_id, search_query))
def mark_as_read(self, user_id: int, article_id: str):
"""Mark an article as read"""
query = """
UPDATE user_article_tracking
SET read_at = %s
WHERE user_id = %s AND article_id = %s
"""
self.db.execute(query, (datetime.utcnow(), user_id, article_id))
def exclude_article(self, user_id: int, article_id: str):
"""Exclude an article from view and use for training filters"""
query = """
INSERT INTO user_article_tracking
(user_id, article_id, status)
VALUES (%s, %s, 'excluded')
ON CONFLICT (user_id, article_id)
DO UPDATE SET status = 'excluded'
"""
self.db.execute(query, (user_id, article_id))
Data Retention and Archiving
Retention Policy:
- Active articles (saved, read_later): Kept indefinitely
- Excluded articles: Retained for 90 days for filter training
- Unsaved fetched articles: Retained for 30 days
- Archived articles: Compressed and moved to cold storage after 1 year
Archiving Service:
class ArticleArchiver:
def archive_old_articles(self, days_old=365):
"""
Archive articles older than specified days
Moves article content to cold storage and updates database
"""
query = f"""
UPDATE articles
SET
body = NULL,
archived_location = %s,
archived_at = %s
WHERE fetched_date < NOW() - INTERVAL '{days_old} days'
AND body IS NOT NULL
RETURNING id
"""
# Implementation would move body to S3/cold storage
Component 4: Recall API and JSON Interface
The recall API provides programmatic access to tracked articles, enabling diverse client applications (web, mobile, CLI tools, integrations) to retrieve and consume saved news content.
API Design Principles
1. RESTful Architecture
- Resource-based URLs
- Standard HTTP methods (GET, POST, PUT, DELETE)
- Predictable endpoint structure
- Proper status codes
2. Flexible Querying
- Multiple filter options
- Pagination support
- Sorting capabilities
- Search functionality
3. Performance
- Response caching
- Efficient pagination
- Optional field selection
- Batch operations
4. Security
- Authentication required
- Rate limiting
- API key rotation
- Audit logging
API Endpoints
Authentication:
POST /api/v1/auth/login
POST /api/v1/auth/refresh
Article Retrieval:
GET /api/v1/articles/saved # List saved articles
GET /api/v1/articles/saved/:id # Get specific article
GET /api/v1/articles/search # Search saved articles
GET /api/v1/articles/tags # List all tags
GET /api/v1/articles/tags/:tag # Articles by tag
Article Management:
POST /api/v1/articles/:id/save # Save article
DELETE /api/v1/articles/:id/save # Unsave article
PUT /api/v1/articles/:id/tags # Update tags
PUT /api/v1/articles/:id/notes # Update notes
POST /api/v1/articles/:id/read # Mark as read
Collections:
GET /api/v1/collections # List collections
POST /api/v1/collections # Create collection
GET /api/v1/collections/:id # Get collection
PUT /api/v1/collections/:id # Update collection
DELETE /api/v1/collections/:id # Delete collection
API Response Format
List Articles Response:
{
"status": "success",
"data": {
"articles": [
{
"id": "article_12345",
"url": "https://techcrunch.com/2026/01/07/ai-breakthrough",
"title": "AI Breakthrough: New Model Achieves 95% Accuracy",
"summary": "Researchers at MIT have developed a new machine learning model...",
"author": "Jane Smith",
"source": {
"name": "TechCrunch",
"uri": "techcrunch"
},
"published_date": "2026-01-07T10:30:00Z",
"image_url": "https://example.com/images/ai-model.jpg",
"categories": ["Technology", "AI", "Research"],
"concepts": ["Artificial Intelligence", "Machine Learning", "MIT"],
"sentiment": 0.75,
"tracking": {
"saved_at": "2026-01-07T14:20:00Z",
"read_at": "2026-01-07T15:10:00Z",
"tags": ["AI", "research", "important"],
"notes": "Great findings, review for team meeting"
}
},
{
"id": "article_12346",
"url": "https://wired.com/2026/01/07/industry-ai-adoption",
"title": "Industry Report: AI Adoption Grows 40% YoY",
"summary": "A new report shows enterprise AI adoption has grown significantly...",
"author": "John Doe",
"source": {
"name": "Wired",
"uri": "wired"
},
"published_date": "2026-01-07T08:15:00Z",
"image_url": "https://example.com/images/ai-growth.jpg",
"categories": ["Business", "Technology"],
"concepts": ["AI Adoption", "Enterprise", "Industry Trends"],
"sentiment": 0.60,
"tracking": {
"saved_at": "2026-01-07T13:45:00Z",
"read_at": null,
"tags": ["AI", "business", "trends"],
"notes": null
}
}
],
"pagination": {
"page": 1,
"per_page": 20,
"total_pages": 13,
"total_count": 247
}
},
"meta": {
"timestamp": "2026-01-07T19:00:00Z",
"api_version": "1.0"
}
}
Single Article Response:
{
"status": "success",
"data": {
"id": "article_12345",
"url": "https://techcrunch.com/2026/01/07/ai-breakthrough",
"title": "AI Breakthrough: New Model Achieves 95% Accuracy",
"body": "Full article text here...",
"summary": "Researchers at MIT have developed...",
"author": "Jane Smith",
"source": {
"name": "TechCrunch",
"uri": "techcrunch",
"homepage": "https://techcrunch.com"
},
"published_date": "2026-01-07T10:30:00Z",
"language": "eng",
"image_url": "https://example.com/images/ai-model.jpg",
"categories": ["Technology", "AI", "Research"],
"concepts": [
{
"label": "Artificial Intelligence",
"relevance": 0.95
},
{
"label": "Machine Learning",
"relevance": 0.88
},
{
"label": "MIT",
"relevance": 0.75
}
],
"sentiment": 0.75,
"tracking": {
"saved_at": "2026-01-07T14:20:00Z",
"read_at": "2026-01-07T15:10:00Z",
"tags": ["AI", "research", "important"],
"notes": "Great findings, review for team meeting",
"collections": ["Research Papers", "AI Developments"]
},
"related_articles": [
{
"id": "article_12390",
"title": "Previous AI Research from MIT",
"url": "https://example.com/previous-research",
"relevance": 0.82
}
]
}
}
Error Response:
{
"status": "error",
"error": {
"code": "ARTICLE_NOT_FOUND",
"message": "Article with ID 'article_99999' not found",
"details": {
"article_id": "article_99999"
}
},
"meta": {
"timestamp": "2026-01-07T19:00:00Z",
"api_version": "1.0"
}
}
API Implementation Example
from flask import Flask, request, jsonify
from functools import wraps
app = Flask(__name__)
def require_auth(f):
@wraps(f)
def decorated_function(*args, **kwargs):
token = request.headers.get('Authorization')
if not token:
return jsonify({
"status": "error",
"error": {
"code": "UNAUTHORIZED",
"message": "Authentication required"
}
}), 401
user = validate_token(token)
if not user:
return jsonify({
"status": "error",
"error": {
"code": "INVALID_TOKEN",
"message": "Invalid or expired token"
}
}), 401
request.user = user
return f(*args, **kwargs)
return decorated_function
@app.route('/api/v1/articles/saved', methods=['GET'])
@require_auth
def get_saved_articles():
"""
Get saved articles for authenticated user
Query Parameters:
page: Page number (default: 1)
per_page: Results per page (default: 20, max: 100)
tags: Comma-separated list of tags
date_from: ISO 8601 date (YYYY-MM-DD)
date_to: ISO 8601 date (YYYY-MM-DD)
sort: Sort field (saved_at, published_date, title)
order: Sort order (asc, desc)
"""
# Parse query parameters
page = int(request.args.get('page', 1))
per_page = min(int(request.args.get('per_page', 20)), 100)
tags = request.args.get('tags', '').split(',') if request.args.get('tags') else None
date_from = parse_date(request.args.get('date_from'))
date_to = parse_date(request.args.get('date_to'))
sort = request.args.get('sort', 'saved_at')
order = request.args.get('order', 'desc')
# Get articles from service
tracking_service = ArticleTrackingService(db)
articles = tracking_service.get_saved_articles(
user_id=request.user.id,
tags=tags,
date_from=date_from,
date_to=date_to,
limit=per_page,
offset=(page - 1) * per_page
)
# Get total count for pagination
total_count = tracking_service.count_saved_articles(
user_id=request.user.id,
tags=tags,
date_from=date_from,
date_to=date_to
)
# Format response
return jsonify({
"status": "success",
"data": {
"articles": [format_article(a) for a in articles],
"pagination": {
"page": page,
"per_page": per_page,
"total_pages": (total_count + per_page - 1) // per_page,
"total_count": total_count
}
},
"meta": {
"timestamp": datetime.utcnow().isoformat() + "Z",
"api_version": "1.0"
}
})
@app.route('/api/v1/articles/search', methods=['GET'])
@require_auth
def search_saved_articles():
"""
Search saved articles
Query Parameters:
q: Search query
page: Page number (default: 1)
per_page: Results per page (default: 20, max: 100)
"""
query = request.args.get('q', '')
if not query:
return jsonify({
"status": "error",
"error": {
"code": "MISSING_QUERY",
"message": "Search query parameter 'q' is required"
}
}), 400
page = int(request.args.get('page', 1))
per_page = min(int(request.args.get('per_page', 20)), 100)
tracking_service = ArticleTrackingService(db)
results = tracking_service.search_saved_articles(
user_id=request.user.id,
search_query=query
)
# Paginate results
start = (page - 1) * per_page
end = start + per_page
paginated_results = results[start:end]
return jsonify({
"status": "success",
"data": {
"articles": [format_article(a) for a in paginated_results],
"pagination": {
"page": page,
"per_page": per_page,
"total_pages": (len(results) + per_page - 1) // per_page,
"total_count": len(results)
}
},
"meta": {
"timestamp": datetime.utcnow().isoformat() + "Z",
"api_version": "1.0",
"search_query": query
}
})
@app.route('/api/v1/articles/<article_id>/save', methods=['POST'])
@require_auth
def save_article(article_id):
"""
Save an article
Request Body:
tags: Array of tags (optional)
notes: String notes (optional)
"""
data = request.get_json() or {}
tags = data.get('tags', [])
notes = data.get('notes')
tracking_service = ArticleTrackingService(db)
tracking_service.save_article(
user_id=request.user.id,
article_id=article_id,
tags=tags,
notes=notes
)
return jsonify({
"status": "success",
"data": {
"article_id": article_id,
"saved": True
}
})
def format_article(article):
"""Format article object for API response"""
return {
"id": article['id'],
"url": article['url'],
"title": article['title'],
"summary": article.get('summary'),
"author": article.get('author'),
"source": {
"name": article.get('source_name'),
"uri": article.get('source_uri')
},
"published_date": article['published_date'].isoformat() + "Z" if article.get('published_date') else None,
"image_url": article.get('image_url'),
"categories": article.get('categories', []),
"concepts": article.get('concepts', []),
"sentiment": float(article['sentiment']) if article.get('sentiment') else None,
"tracking": {
"saved_at": article['saved_at'].isoformat() + "Z" if article.get('saved_at') else None,
"read_at": article['read_at'].isoformat() + "Z" if article.get('read_at') else None,
"tags": article.get('tags', []),
"notes": article.get('notes')
}
}
Rate Limiting
Protect the API from abuse:
from flask_limiter import Limiter
from flask_limiter.util import get_remote_address
limiter = Limiter(
app=app,
key_func=get_remote_address,
default_limits=["1000 per hour", "100 per minute"]
)
@app.route('/api/v1/articles/saved')
@limiter.limit("200 per hour")
@require_auth
def get_saved_articles():
# Implementation
pass
Caching Strategy
Improve performance with strategic caching:
from flask_caching import Cache
cache = Cache(app, config={
'CACHE_TYPE': 'redis',
'CACHE_REDIS_URL': 'redis://localhost:6379/0'
})
@app.route('/api/v1/articles/saved')
@cache.cached(timeout=300, query_string=True)
@require_auth
def get_saved_articles():
# Cache for 5 minutes, vary by query string
pass
Integration Examples
Web Application Integration
// JavaScript fetch API example
class NewsAPIClient {
constructor(apiUrl, authToken) {
this.apiUrl = apiUrl;
this.authToken = authToken;
}
async getSavedArticles(options = {}) {
const params = new URLSearchParams();
if (options.page) params.append('page', options.page);
if (options.perPage) params.append('per_page', options.perPage);
if (options.tags) params.append('tags', options.tags.join(','));
if (options.dateFrom) params.append('date_from', options.dateFrom);
if (options.dateTo) params.append('date_to', options.dateTo);
const response = await fetch(
`${this.apiUrl}/api/v1/articles/saved?${params}`,
{
headers: {
'Authorization': `Bearer ${this.authToken}`,
'Content-Type': 'application/json'
}
}
);
if (!response.ok) {
throw new Error(`API error: ${response.status}`);
}
return await response.json();
}
async saveArticle(articleId, tags = [], notes = null) {
const response = await fetch(
`${this.apiUrl}/api/v1/articles/${articleId}/save`,
{
method: 'POST',
headers: {
'Authorization': `Bearer ${this.authToken}`,
'Content-Type': 'application/json'
},
body: JSON.stringify({ tags, notes })
}
);
if (!response.ok) {
throw new Error(`API error: ${response.status}`);
}
return await response.json();
}
async searchArticles(query, page = 1) {
const params = new URLSearchParams({
q: query,
page: page
});
const response = await fetch(
`${this.apiUrl}/api/v1/articles/search?${params}`,
{
headers: {
'Authorization': `Bearer ${this.authToken}`,
'Content-Type': 'application/json'
}
}
);
if (!response.ok) {
throw new Error(`API error: ${response.status}`);
}
return await response.json();
}
}
// Usage
const client = new NewsAPIClient('https://api.example.com', 'your-auth-token');
// Get saved articles
const articles = await client.getSavedArticles({
page: 1,
perPage: 20,
tags: ['AI', 'technology']
});
console.log(`Found ${articles.data.pagination.total_count} articles`);
articles.data.articles.forEach(article => {
console.log(`- ${article.title} (${article.source.name})`);
});
Mobile Application Integration (React Native)
// React Native component example
import React, { useState, useEffect } from 'react';
import { View, Text, FlatList, TouchableOpacity, StyleSheet } from 'react-native';
const SavedArticlesScreen = ({ authToken }) => {
const [articles, setArticles] = useState([]);
const [loading, setLoading] = useState(true);
const [page, setPage] = useState(1);
useEffect(() => {
loadArticles();
}, [page]);
const loadArticles = async () => {
try {
setLoading(true);
const response = await fetch(
`https://api.example.com/api/v1/articles/saved?page=${page}&per_page=20`,
{
headers: {
'Authorization': `Bearer ${authToken}`,
'Content-Type': 'application/json'
}
}
);
const data = await response.json();
setArticles(data.data.articles);
} catch (error) {
console.error('Error loading articles:', error);
} finally {
setLoading(false);
}
};
const renderArticle = ({ item }) => (
<TouchableOpacity
style={styles.articleCard}
onPress={() => openArticle(item.url)}
>
<Text style={styles.title}>{item.title}</Text>
<Text style={styles.source}>
{item.source.name} • {formatDate(item.published_date)}
</Text>
<View style={styles.tags}>
{item.tracking.tags.map(tag => (
<Text key={tag} style={styles.tag}>{tag}</Text>
))}
</View>
</TouchableOpacity>
);
return (
<View style={styles.container}>
<FlatList
data={articles}
renderItem={renderArticle}
keyExtractor={item => item.id}
onRefresh={loadArticles}
refreshing={loading}
/>
</View>
);
};
const styles = StyleSheet.create({
container: {
flex: 1,
backgroundColor: '#fff'
},
articleCard: {
padding: 16,
borderBottomWidth: 1,
borderBottomColor: '#e0e0e0'
},
title: {
fontSize: 16,
fontWeight: 'bold',
marginBottom: 8
},
source: {
fontSize: 12,
color: '#666',
marginBottom: 8
},
tags: {
flexDirection: 'row',
flexWrap: 'wrap'
},
tag: {
backgroundColor: '#e3f2fd',
paddingHorizontal: 8,
paddingVertical: 4,
marginRight: 8,
marginTop: 4,
borderRadius: 4,
fontSize: 12
}
});
CLI Tool Integration
#!/usr/bin/env python3
"""
Command-line tool for accessing saved news articles
"""
import requests
import argparse
from datetime import datetime
from tabulate import tabulate
class NewsClient:
def __init__(self, api_url, auth_token):
self.api_url = api_url
self.auth_token = auth_token
self.headers = {
'Authorization': f'Bearer {auth_token}',
'Content-Type': 'application/json'
}
def get_saved_articles(self, tags=None, limit=20):
params = {'per_page': limit}
if tags:
params['tags'] = ','.join(tags)
response = requests.get(
f'{self.api_url}/api/v1/articles/saved',
headers=self.headers,
params=params
)
response.raise_for_status()
return response.json()
def search_articles(self, query, limit=20):
response = requests.get(
f'{self.api_url}/api/v1/articles/search',
headers=self.headers,
params={'q': query, 'per_page': limit}
)
response.raise_for_status()
return response.json()
def main():
parser = argparse.ArgumentParser(description='News Article CLI')
parser.add_argument('--api-url', required=True, help='API base URL')
parser.add_argument('--token', required=True, help='Auth token')
subparsers = parser.add_subparsers(dest='command', help='Commands')
# List command
list_parser = subparsers.add_parser('list', help='List saved articles')
list_parser.add_argument('--tags', nargs='+', help='Filter by tags')
list_parser.add_argument('--limit', type=int, default=20, help='Number of articles')
# Search command
search_parser = subparsers.add_parser('search', help='Search articles')
search_parser.add_argument('query', help='Search query')
search_parser.add_argument('--limit', type=int, default=20, help='Number of results')
args = parser.parse_args()
client = NewsClient(args.api_url, args.token)
if args.command == 'list':
data = client.get_saved_articles(tags=args.tags, limit=args.limit)
articles = data['data']['articles']
table = []
for article in articles:
table.append([
article['title'][:60],
article['source']['name'],
article['published_date'][:10],
', '.join(article['tracking']['tags'])
])
print(tabulate(table, headers=['Title', 'Source', 'Date', 'Tags']))
print(f"\nTotal: {data['data']['pagination']['total_count']} articles")
elif args.command == 'search':
data = client.search_articles(args.query, limit=args.limit)
articles = data['data']['articles']
for i, article in enumerate(articles, 1):
print(f"\n{i}. {article['title']}")
print(f" {article['source']['name']} - {article['published_date'][:10]}")
print(f" {article['url']}")
if article['tracking']['tags']:
print(f" Tags: {', '.join(article['tracking']['tags'])}")
if __name__ == '__main__':
main()
Advanced Features
1. Collaborative Collections
Allow users to create and share collections of articles:
{
"id": "collection_001",
"name": "AI Research Papers Q4 2025",
"description": "Curated collection of important AI research",
"owner_id": "user_123",
"visibility": "public",
"collaborators": ["user_456", "user_789"],
"articles": ["article_001", "article_002", "article_003"],
"created_at": "2025-12-01T00:00:00Z",
"updated_at": "2026-01-07T19:00:00Z"
}
2. Email Digests
Send periodic email summaries of saved articles:
- Daily digest: Morning summary of yesterday’s saved articles
- Weekly digest: Curated highlights from the week
- Custom digests: User-defined schedules and criteria
3. Browser Extension
Enable one-click saving from any webpage:
// Chrome extension example
chrome.runtime.onMessage.addListener((request, sender, sendResponse) => {
if (request.action === 'saveArticle') {
saveArticle({
url: request.url,
title: request.title,
tags: request.tags
});
}
});
4. Slack/Teams Integration
Post saved articles to team channels:
/news save [URL] #team-research
/news search AI developments
/news digest weekly
5. Export Functionality
Export saved articles in various formats:
- JSON: For programmatic access
- CSV: For spreadsheet analysis
- PDF: For offline reading
- Markdown: For documentation
6. AI-Powered Insights
Leverage AI to provide additional value:
- Summarization: Generate concise summaries of long articles
- Trend Detection: Identify emerging topics across saved articles
- Recommendations: Suggest related articles based on reading history
- Sentiment Tracking: Monitor sentiment changes on topics over time
- Duplicate Detection: Identify articles covering the same event
Security and Privacy Considerations
Data Protection
Encryption:
- HTTPS/TLS for all API communications
- Encryption at rest for stored articles
- Encrypted backups
Access Control:
- User-level data isolation
- Role-based permissions
- API key management
- Token expiration and rotation
Privacy:
- User data deletion on request
- Anonymized analytics
- Transparent data usage policies
- GDPR compliance
Compliance
Data Retention:
- Clear retention policies
- Automated data purging
- User control over data
Audit Logging:
- Track all API access
- Monitor unusual patterns
- Security event alerts
Performance and Scalability
Caching Strategy
Multi-Level Caching:
- Browser Cache: Static assets, API responses (5-15 minutes)
- CDN Cache: Article images, public data
- Application Cache: Database queries, API responses (5-30 minutes)
- Database Cache: Query results, indexes
Database Optimization
Indexing:
- Indexes on frequently queried fields
- Full-text search indexes
- Composite indexes for common query patterns
Partitioning:
- Partition articles table by date
- Separate hot and cold data
- Archive old articles to cold storage
Horizontal Scaling
Stateless API Design:
- Load balancer distributes requests
- Auto-scaling based on traffic
- Session storage in Redis
Database Scaling:
- Read replicas for query distribution
- Sharding by user_id or date
- Connection pooling
Cost Analysis
NewsAPI.ai Costs
Pricing tiers (example):
- Basic: $299/month - 10,000 articles/day
- Professional: $999/month - 50,000 articles/day
- Enterprise: Custom pricing - Unlimited
Infrastructure Costs
AWS Example (monthly):
- Compute: $200-500 (EC2/ECS)
- Database: $150-300 (RDS PostgreSQL)
- Cache: $50-100 (ElastiCache Redis)
- Storage: $50-200 (S3)
- API Gateway: $50-150
- Total: ~$500-1,250/month
Cost Optimization
Strategies:
- Cache frequently accessed articles
- Compress old articles
- Use reserved instances
- Implement smart polling (reduce API calls)
- Archive cold data to cheaper storage
Conclusion
A well-designed news article monitoring, filtering, and tracking system transforms the overwhelming flow of information into a curated, actionable knowledge base. By combining automated monitoring through NewsAPI.ai, intelligent filtering optimized for user interaction, robust tracking and storage, and flexible API-driven recall, organizations and individuals can efficiently stay informed on topics that matter most.
The system design presented here provides:
- Automated Discovery - Continuous monitoring of news sources without manual effort
- Efficient Filtering - User-optimized interface enabling rapid scanning and selection
- Reliable Tracking - Durable storage with rich metadata and organization
- Flexible Recall - JSON API supporting diverse client applications
- Scalability - Architecture ready for growth in users and article volume
- Intelligence - AI-powered features for enhanced user experience
Whether you’re building this system for personal use, a small team, or an enterprise organization, the principles and patterns outlined here provide a solid foundation for implementation. The key to success lies in optimizing the filtering interface for your specific use case—making it as effortless as possible for users to separate signal from noise and build their own curated information streams.
Key Takeaways
- API-First Design - NewsAPI.ai provides rich data; leverage its full capabilities
- User Experience Matters - Filtering interface must be fast, intuitive, and powerful
- Data Persistence - Robust storage ensures articles remain accessible long-term
- Flexible Access - JSON API enables diverse client applications and integrations
- Intelligent Filtering - Machine learning and AI enhance relevance and reduce noise
- Scalable Architecture - Design for growth from day one
- Security and Privacy - Protect user data and comply with regulations
- Cost Management - Monitor API usage and infrastructure costs closely
Additional Resources
- NewsAPI.ai Documentation
- RESTful API Design Best Practices
- PostgreSQL Full-Text Search
- React Native Documentation
- Flask API Development
Have you built a news monitoring or article tracking system? What challenges did you face with filtering and organizing content? Share your experiences and insights in the comments below.